An isoperimetric inequality on the lp balls

نویسنده

  • Sasha Sodin
چکیده

The normalised volume measure on the lp unit ball (1 ≤ p ≤ 2) satisfies the following isoperimetric inequality: the boundary measure of a set of measure a is at least cnã log(1/ã), where ã = min(a, 1− a). Résumé Nous prouvons une inégalité isopérimétrique pour la mesure uniforme Vp,n sur la boule unité de l n p (1 ≤ p ≤ 2). Si Vp,n(A) = a, alors V + p,n(A) ≥ cn ã log 1/ã, où V + p,n est la mesure de surface associée à Vp,n, ã = min(a, 1− a) et c est une constante absolue. En particulier, les boules unités de lp vérifient la conjecture de Kannan– Lovász–Simonovits [KLS] sur la constante de Cheeger d’un corps convexe isotrope. La démonstration s’appuie sur les inégalités isopérimétriques de Bobkov [B1] et de Barthe–Cattiaux–Roberto [BCR], et utilise la représentation de Vp,n établie par Barthe–Guédon–Mendelson–Naor [BGMN] ainsi qu’un argument de découpage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoperimetric profile of subgroups and probability of return of random walks on elementary solvable groups

We introduce a notion of large-scale foliation for metric measure spaces and we prove that if X is large-scale foliated by Y , and if Y satisfies a Sobolev inequality at large-scale, then so does X. In particular the Lp-isoperimetric of Y grows faster than the one of X. A special case is when Y = H is a closed subgroup of a locally compact group X = G. The class of elementary solvable groups is...

متن کامل

SHARP AFFINE Lp SOBOLEV INEQUALITIES

In this paper we prove a sharp affine Lp Sobolev inequality for functions on R. The new inequality is significantly stronger than (and directly implies) the classical sharp Lp Sobolev inequality of Aubin [A2] and Talenti [T], even though it uses only the vector space structure and standard Lebesgue measure on R. For the new inequality, no inner product, norm, or conformal structure is needed at...

متن کامل

VOLUME INEQUALITIES FOR SUBSPACES OF Lp

A direct approach is used to establish both Ball and Barthe’s reverse isoperimetric inequalities for the unit balls of subspaces of Lp. This approach has the advantage that it completely settles all the open uniqueness questions for these inequalities. Affine isoperimetric inequalities generally have ellipsoids as extremals. The so called reverse affine isoperimetric inequalities usually have s...

متن کامل

On Isoperimetric Inequalities for Log-convex Measures

Let μ = ρdx be a Borel measure on Rd. A Borel set A ⊂ R is a solution of the isoperimetric problem if for any B ⊂ R satisfying μ(A) = μ(B) one has μ(∂A) ≤ μ(∂B), where μ(∂A) = ∫ ∂A ρ dHd−1 is the corresponding surface measure. There exists only a small number of examples where the isoperimetric problem has an exact solution. The most important case is given by Lebesgue measure λ on R, the solut...

متن کامل

Stability results for some geometric inequalities and their functional versions ∗

The Blaschke Santaló inequality and the Lp affine isoperimetric inequalities are major inequalities in convex geometry and they have a wide range of applications. Functional versions of the Blaschke Santaló inequality have been established over the years through many contributions. More recently and ongoing, such functional versions have been established for the Lp affine isoperimetric inequali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008